
9148 J. Am. Chem. Soc. 1993, 115, 9148-9159 

A Combined Application of Two Different Neural Network 
Types for the Prediction of Chemical Reactivity 

Vera Simon/ Johann Gasteiger,*-* and Jure Zupan* 

Contribution from the Organisch-chemisches Institut, Technische Universitat Munchen, 
Lichtenbergstrasse 4, D-85747 Garching, Germany, and National Institute of Chemistry, 
61115 Ljubljana, Slovenia 

Received February 5, 1993* 

Abstract: A multilayer neural network trained by the back-propagation algorithm is developed that is able to predict 
which single bonds in aliphatic molecules will break preferentially. Each potential bond breaking is described by seven 
empirical physicochemical parameters that allow the treatment of large datasets of organic molecules. This makes 
the approach outlined in this paper attractive for an automatic learning from reaction databases. It is demonstrated 
that a Kohonen network can be used as a basis for the selection of a training set for a supervised learning method. For 
training a multilayer neural network this selection gives results that are superior to a random selection and also to an 
experimental design technique. A detailed analysis of the Kohonen mapping shows that the chemical similarity of bond 
breakings is perceived by the topology-conserving Kohonen mapping of a multidimensional space. 

1. Introduction 

One of the fundamental tasks in organic chemistry is the 
prediction of the course of chemical reactions. A chemical reaction 
consists of the breaking of one or more bonds in the reactants and 
then the making of one or more new bonds to give the products. 
Reaction mechanisms are sequences of such single reaction steps. 
In order to predict how a molecule will react, information about 
the most reactive bonds within the molecule is needed. 

For several years databases on chemical reactions have been 
increasingly used by chemists to determine if a particular reaction 
can be achieved or not. Conclusions are mostly drawn by analogy. 
In such reaction databases, the bonds broken and made in a 
reaction are marked. It would be highly desirable to have 
automatic methods that can learn and then generalize on chemical 
reactivity from such instances of chemical reactions. 

Chemists base their knowledge about the reactivity of bonds 
on a variety of effects that are of energetic, electronic, and steric 
nature. However, these effects are mostly used in a qualitative 
manner, and the prediction of reactivity is quite often an intuitive 
process. By looking for functional groups a chemist can pinpoint 
the bonds that are potentially breakable. However, if there are 
several functional groups present that interfere and compete with 
one another, bonds that are not part of functional groups might 
become reactive. 

A solution to this problem can be found if quantitative values 
can be assigned to the various chemical effects influencing the 
reactivity of a bond. In the last decade, empirical methods have 
been developed for the calculation of the magnitude of electronic 
and energy effects. The values calculated by these methods have 
been used to correlate or calculate physical data and thus their 
physicochemical significance has been established.1 On the basis 
of these results the use of such parameters for correlating and 
predicting chemical reactivity and for proposing detailed mech­
anisms of organic reactions was investigated.2'3 

Statistical and pattern recognition methods allowed the extent 
of the contribution of the various chemical effects to reactivity 
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to be deciphered.4'5 Equations were derived for the calculation 
of quantitative values on chemical reactivity, mostly by multilinear 
regression analyses and by the partial least-squares (PLS) 
technique. Such an approach implies that the relationship between 
chemical reactivity and the values of the electronic and energy 
effects is of a linear nature or can easily be transformed into a 
linear problem. Such a simple linear model rarely describes the 
often complex problem satisfactorily. 

Recently a new approach to the problem of prediction of 
chemical reactivity has been tried. Instead of modeling the 
relationship in an explicit function, an associative memory system 
has been developed that stores the relationship in an implicit 
manner in computer memory.6 In this way, the power of an 
associative memory system7 as a model of the information 
processing method in the cerebellum has been applied to chemical 
data. 

In recent years, models of the information processing method 
in the human brain have gained much prominence. The 
development of such models, called artificial neural networks, or 
neural networks for short, picked up momentum with the 
publication of Hopfield's paper in 1982 that introduced the concept 
of nonlinearity.8 The decisive impulse, however, came when 
Rumelhart, Hinton, and Williams introduced in 1986 the idea 
of learning by error back-propagation in a multilayer neural 
network.9 Whatever the overwhelming success of this particular 
neural network model, it should not be forgotten that other neural 
network models have been developed that have important merits 
and deserve closer inspection and more widespread application. 
This is particularly true for the Kohonen network which is a 
"self-organized topological feature map" and bears close similarity 
to the information processing in the sensory, auditory, and visual 
cortex of the human brain. The Kohonen network was developed 
between 1979 and 198210 and is described in detail in a 
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Figure 1. Objective of the study: prediction of polar reactivity by a 
neural network. 

monograph.'' Kohonen's work is related to the work of Willshaw 
and von der Malsburg.12 

Neural networks have also been applied to a host of chemical 
problems,13 mostly by resorting to the back-propagation algorithm. 
Several applications of neural networks to chemical reactions 
have been published.14-16 In their first study, Elrod, Maggiora, 
and Trenary investigated the regioselectivity in the nitration of 
monosubstituted benzene derivatives.14 Subsequently, they in­
vestigated a representation of chemical structures for the treatment 
of additions to alkenes, Diels-Alder and retro-Diels-Alder 
reactions, and Saytzeff eliminations.15 Luce and Govind devel­
oped a neural network for retrosynthetic analysis.16 Neural 
networks offer the possibility of following the reasoning of the 
chemist in deriving knowledge about chemical reactivity. The 
chemist makes observations on which parts (bonds) of a molecule 
react. Based on a series of such observations he or she makes 
generalizations and derives rules which allow him to draw 
inferences on which bonds of a given molecule will preferentially 
break. 

In analogy to this, we wanted to develop a neural network that, 
when presented with a structural formula, would point out those 
bonds that break preferentially (Figure 1). 

Two different neural network models are used in this study, 
a multilayer neural network trained by the back-propagation 
algorithm9 and the Kohonen network trained by competitive 
learning.11 This exploits the specific characteristics of these two 
different methods in analyzing and modeling data on chemical 
reactivity. 

It is shown that a Kohonen network is a powerful tool for the 
selection of optimum datasets in comparison to a random selection 
and to a selection by experimental design techniques.18 Fur­
thermore, it is demonstrated that the topology conserving mapping 
by a Kohonen network maintains important chemical relationships 
and shows chemical similarities. A Kohonen network has already 
been used in a quantitative structure activity study.17 
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Figure 2. The two possibilities for heterolysis of a bond. 

The back-propagation algorithm is used to model the rela­
tionships between electronic and energy parameters of bonds in 
an organic molecule and their propensity for heterolysis. This 
implicit nonlinear modeling is used for a classification of bonds 
into reactive and non-reactive and thus for the prediction of the 
ease of polar breaking of a chemical bond. 

2. Polar Bond Breaking 
The aim of this study is to develop a neural network that is able 

to predict the polar reactivity of single bonds in aliphatic 
compounds. In particular, the neural network should predict 
which bonds in an aliphatic molecule are preferentially broken 
to give positively and negatively charged species. 

A dataset of 29 aliphatic molecules was selected that covers 
the range of polar reactivity in aliphatic compounds as broadly 
as possible. This dataset contains 385 single and double bonds 
which correspond to 770 polar bond breakings as each bond can 
break in two directions (Figure 2). 

Interest was only focused onto the 724 breakings of single 
bonds. As quite a few of the bonds are equivalent (e.g., the three 
C-H bonds of a methyl group) the dataset can be reduced to 373 
chemically different breakings of single bonds. From these bond 
breakings 116 were selected and classified by chemists as either 
reactive or non-reactive. Altogether 42 bond breakings were 
considered reactive and 74 non-reactive. In a later stage of the 
study it was found necessary (see section 8) to classify an additional 
33 bond breakings as reactive (1) or non-reactive (32). Thus, 
altogether 149 bond breakings were classified as 43 reactive and 
106 non-reactive. AU 149 bond breakings are indicated in Scheme 
I. 

The dataset of 116 bond breakings has already been studied 
with various statistical and pattern recognition methods and with 
an associative memory system (AMS).4-6 

3. Neural Networks 
A variety of different types of artificial neural networks have 

been developed to model different activities of the human brain. 
These computerized neural networks can be applied to various 
tasks in information processing: classification, modeling, asso­
ciation, and mapping.13'19 The different neural network models 
are applicable to these types of problems to different extents. 

In this paper we will demonstrate the capability of a multilayer 
neural network trained with the back-propagation algorithm for 
classifying chemical data. In particular, we will show how the 
susceptibility of a bond in an aliphatic organic molecule for polar 
breaking can be predicted from a series of electronic and energy 
variables calculated for this bond breaking. 

In addition, we will show the merits of a Kohonen network for 
mapping multidimensional data. Thus, both supervised and 
unsupervised learning techniques are employed in analyzing data 
on chemical reactivity. 

Multilayer Neural Network. The purpose of a multilayer neural 
network is to convert a series of input data x (x\, X2, ..., X1, ..., 
xm) into one or more output data y (yu y2,..., yj,..., y„). In this 
sense one can conceive such a neural network as an alternative 

(19) Gasteiger, J.; Zupan, J. Angew. Chem. 1993, 105, 510-536; Angew. 
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Scheme I. Dataset of 29 Molecules with 149 Classified Bond Breakings" 
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; = i , . (D y,- = f/x) 

However, a neural network does not express such a relationship 
in an explicit manner but contains it internally in an implicit 
manner (in the form of weights as will be shown next). 

Figure 3 shows a feed-forward two-layer neural network. 
Squares indicate input units and circles represent neurons. Each 
neuron of one layer is connected with each neuron of the layers 
directly above and below. These connections are associated with 
weights that represent the strength of a connection. The top 
layer is called the input layer and the bottom layer is called the 
output layer. There exists one additional unit, called bias, which 
is connected with each neuron of all the non-input layers. All 
neurons of each level perform the same basic operations: they 
obtain input signals (data), convert these signals to a net input 
signal (Net), and then transform this signal into an output signal 
(out) (Figure 4). 

In calculating the net input of a neuron, j , the inputs x (*i, 
Xi, ..., Xt, ..., xm) from all m neurons of the preceding layer are 

1.0 

' bias 

bias 

input layer 

hidden layer 

output layer 

Figure 3. Two-layer neural network. Squares indicate input units and 
circles neurons; only the layers of the neurons are counted in specifying 
the number of layers. The information flows from top (input) to bottom 
(output). The black square indicates the bias. 

taken into account. The values of Xi are usually scaled into the 
range from O to 1 or from -1 to +1. The net value of neuron j , 
Netj, is calculated from all m input data, xt. 
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transfer function 

Figure 4. Basic operations of a neuron. The dots indicate weights and 
the arrows the incoming signals (data). 

Netj = £ 
i - i 

Wj1X1 (2) 

An element w,, of the weight matrix expresses the weight value 
between neurons i and; and can take either a positive or a negative 
value. The output, outy, of a neuron j is obtained from the net 
input, Netj, by application of eq 3. 

outj = i(Netj) = 1/[1 + exp(-aNetj + Qj)] (3) 

The function f is called a transfer function and is here a sigmoid 
function, but any differentiable function can be used instead. 0, 
is a threshold value for neuron j . This neuron only fires when 
this threshold has been reached. All output values are calculated 
synchronously. 

Given m units at the input layer, a set of input data is represented 
by an w-dimensional vector, called "input pattern". Likewise 
the output data can be regarded as a vector, called "output 
pattern". During the training process the input patterns are fed 
to the network to give a result at the output side, outy. This result 
is compared with the expected target output pattern, tj, and the 
network's weights are changed to minimize the error. The training 
is therefore called a supervised process. 

The training is carried out according to the back-propagation 
algorithm7 until the error t (eq 4) becomes acceptably small. 

* = 1Z2^(OUtJ-Ij)2 (4) 

The next step is the recursive adaptation of all weights in the 
network so that the error between the target and the obtained 
output vector becomes as small as possible. The weights w,, are 
adjusted by an amount that is proportional to 

Aw,, = -Ob1X1 + /aAw,,1 (previous cycle) (5) 

Here, r\ is a parameter which determines the shift for correction 
in recursive cycles and is called the learning rate. The parameter 
H, the momentum term, filters out high-frequency variations of 
the error surface in the weight space and thus tries to avoid the 
convergence being trapped in local minima. Furthermore, the 
momentum term ̂ t allows the use of larger values of the learning 
rate, which leads to faster learning. The error fy can be obtained 
for the last (output) layer from the error«. Then, the error Sj 
is back-propagated through the network. For a detailed de­
scription of the back-propagation algorithm the reader is referred 
to the original publication9 or to the cited review papers.13'19 

One learning cycle (epoch) is defined by the input of the data 
and the comparison and correction of weights in all layers for all 
training vectors. To achieve convergence, usually many hundreds 
or even thousands of cycles are necessary. 

Kohonen Network. The perception of similarity in objects is 
a fundamental and frequent activity. In a self-organizing 
neural network the neurons are arranged in a two-dimensional 
array to generate a two-dimensional feature map such that 
similarity in the data is preserved. In other words, if two input 

JS=: *£ 

• central neuron 

' first neighborhood 

• second neighborhood 

" third neighborhood 
Figure 5. Neighborhood of the first, second, and third sphere of a central 
neuron in a Kohonen network. 

Figure 6. The conversion of a rectangular network layer into a toroid. 

data vectors are similar, they will be mapped to neurons that are 
close together in the two-dimensional layer. 

A key difference between the self-organizing maps, often called 
Kohonen networks because of the pioneering role of Kohonen in 
their development, and many other networks is that the self-
organizing maps learn without supervision, hence the word self-
organizing. The input data are fed into the network and after 
a certain number of cycles the network reaches a steady or stable 
state that represents topologies and structures of the multidi­
mensional input spaces. 

The two-dimensional setup of neurons, the Kohonen layer, the 
heart of such a network, is thought to act similarly to biological 
systems in the sence that it preserves order, compacts the 
representation of sparse data, and spreads out dense data. 

In a self-organizing map the input units are fully connected 
to the two-dimensional Kohonen layer. Each neuron within the 
Kohonen layer has a well-defined topology, which means a defined 
number of neurons in its neighborhood. Both a quadratic and 
a hexagonal neighborhood can be used. The quadratic neigh­
borhood offers four neighbors with the shortest distance (top, 
bottom, left, and right) and another four neighbors at the 
diagonals. Most implementations of a Kohonen network use all 
8 neurons for defining the first sphere of neighbors, 16 neurons 
for the second, and so on (Figure 5). 

In our application, each neuron must have the same number 
of neighbors in each neighborhood sphere. Thus, borders in the 
network layer had to be avoided. By connecting the left end of 
the plane with the right end and then the upper with the lower 
end a torus is obtained that has a plane without beginning and 
without end. Thus, each neuron has the same number of neighbors 
in each sphere (Figure 6). 

The geometric figure of a torus can easily be modeled by an 
algorithm using the modulo function each time an access to a 
neuron within the Kohonen layer is made. The importance of 
having the same neighborhood for all neurons is tied to the 
competitive learning applied in a Kohonen network. An incoming 
input pattern is presented to each neuron of the Kohonen layer. 
In the end, only one neuron is selected to represent this pattern. 
This learning rule is therefore often called "the winner takes it 
all". That neuron is selected as winner that has the smallest 
Euclidian distance between the presented w-dimensional input 
pattern vector x (xi, x^, ..., xh ..., xm) and the w-dimensional 
weight vector w, (w,i, w^,..., w,,..., Wjm) of the./ neurons within 
the Kohonen layer (eq 6). 

OUt0 = TTIm[^(X1-Wj,)2] j=\,2,...,m (6) 
/=i 

Learning within a Kohonen layer consists of the adjustment 
of the weights, w,,, in such a manner that the weights of the 



9152 /. Am. Chem. Soc, Vol. 115, No. 20, 1993 Simon et al. 

t, a 

" a 
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TT 

Figure 7. Typical neighborhood functions: constant, triangular, and 
"Mexican hat". 

winning neuron, c, are shifted closer to the values of the input 
data. However, not only the weights of the winning neuron are 
adjusted but also those of the neighboring neurons. Equation 7 
gives the correction formula for the weights. 

^Wj, ' Wj, + f(t^)(X,- Vj1) (7) 

The correction f'actor, j\t,a), has the largest value for the weights 
in the winning neuron, c, and decreases with increasing distance, 
dQ - dj (eq 8). This distance is defined as the number of spheres 
of neighbors between the winning neuron, c, and the neuron j 
being considered (see Figure 5). 

f(r,a)-u(0a(</e-</,) (8) 

here, t means the number of objects entered into the training 
process since the beginning of the training. During training, rj(t) 
becomes smaller and smaller and at the end only the winning 
neutron is adjusted. The value of the neighborhood function, a, 
depends on the distance between the winning neuron, c, and the 
actual neuron, j . Neighborhood functions often used are the 
constant, the triangular, or the so-called "mexican hat" (Figure 
7). 

When presenting an input pattern to the trained network one 
neuron with the largest response is obtained. By creating a map 
of the neurons together with markers categorizing the input data 
that have them excited, the topology of the input data from the 
multidimensional space is reflected in the topology in the two-
dimensional Kohonen map. As an example of such a map see 
Section 9 and Figure 10. 

4. Basic Approach 

The aim of the study was to develop a neural network that, on 
input of a chemical structure, should predict which bond breakings 
are reactive in this molecule and which are not. 

The process for solving this problem was broken down into 
several steps (Figure 8): (1) conversion of the structure input 
into a connection table describing each atom and bond of a 
molecule; (2) calculation of seven electronic and energy variables 
for each bond breaking of a molecule; (3) construction of a two-

OH O 

^ - ^ O C H 3 

' r 

Calculation 
of electronic 
and energy 
parameters 

" 

for each bond breaking 

If H V 1 ' 

Neural Network 

' 

Probability 
of heterolysis 

Figure 8. The basic steps in classifying a bond in an organic structure 
into reactive or non-reactive. 

layer neural network consisting of seven input units, three neurons 
in a hidden layer, and one output neuron that classifies a bond 
breaking into reactive or not; (4) input of these seven variables 
for each bond breaking into a multilayer neural network; and (5) 
supervised training of this multilayer neural network by the back-
propagation algorithm with datasets of bond breakings selected 
by three different procedures (random, experimental design, and 
the Kohonen network). These steps will be given in detail below. 

5. Chemical Effects 

The polar breaking of a bond is influenced and facilitated by 
a variety of physicochemical effects. To model these effects and 
their relative importance, parameters calculated for several 
electronic and energy effects by previously published empirical 
methods20-24 were used. A common feature of these methods is 
that they derive their results directly from a connection table, 
from the constitution of a molecule. However, in contrast to 
most topological indices, they also take into account of the identity 
of the atoms, describing them by their valence state ionization 
potentials and electron affinities20'21 or by additivity increments 
derived from mean molecular polarizabilities or from heats of 
formation. 

In principle, theoretical methods like ab initio quantum 
mechanical procedures can be used to derive variables for the 
description of electronic and energy effects in the various bonds 
of a molecule. However, we wanted to use the trained neural 
network in the reaction prediction system EROS (Elaboration of 
Reactions for Organic Synthesis)2 where many molecules with 
a sizable number of atoms have to be evaluated. This led us to 
resort to the less computer-time demanding empirical methods. 

(20) Gasteiger, J.; Marsili, M. Tetrahedron 1980, 36, 3219-3228. 
(21) Gasteiger, J.; Sailer, H. Angew. Chem. 1985, 97, 699-701; Angew. 

Chem., Int. Ed. Engl. 1985, 24, 687-689. 
(22) Hutchings, M. G.; Gasteiger, J. Tetrahedron Lett. 1983, 24, 2541-

2544. 
(23) Gasteiger, J.; Hutchings, M. G. J. Chem. Soc, Perkin Trans. 2 1984, 

559-564. 
(24) Gasteiger, J. Tetrahedron 1979, 35, 1419-1426. 



Prediction of Chemical Reactivity 

A X o Aq71 R a b Aq t o t QCT BDE 1.0 

bias 

t 
reactive/non-reactive 

Figure 9. The architecture of the network used in this study. 

The significance of the parameters obtained by the empirical 
method has been established in a series of calculations and 
correlations of physical1 and chemical3 data. Thus, they seemed 
appropriate for the description of chemical bond breakings. 

The variables used include values for the charge distribution,20-21 

for the inductive,22 the resonance,4'21 and the polarizability effect,23 

and for bond dissociation energies.3'24 For each bond breaking 
the following seven parameters were calculated: the difference 
in total charge (Agtot)> the difference in ir-charge (Ag1), the 
difference in ^-electronegativity (Ax,,), the amount of charge, 
shifted in the PEOE method across a bond as a measure of bond 
polarity (Q,), the resonance stabilization of charges generated 
by heterolysis (R), the bond polarizability (ab), and the bond 
dissociation energy (BDE). The signs of the first four variables 
depend on the direction of the polar bond breaking; these variables 
change their sign on reversing the polarity of the bond breaking. 
The resonance stabilization is normally quite different not only 
in sign but also in its magnitude for the two possible heterolyses, 
because the mechanisms for the stabilization of a positive or a 
negative charge on the same atom differ. The last two variables 
are independent of the direction of bond breaking. 

6. Back-Propagation Network Architecture 

With seven variables for describing a bond breaking, the chosen 
neural network has seven input units, one for each variable. On 
the output side there are two classes, reactive and non-reactive 
bond breakings. This information can be coded with one or two 
neurons. Tests showed that when two output neurons are used 
the sum of the two output values was always exactly 1.0. Coding 
a simple yes-no decision on two neurons leads to the same results 
as with one output neuron. The weights between the hidden 
layer and the output layer of the second neuron have the same 
values but are of opposite sign to that of the other neuron. 
Therefore, only one neuron was chosen at the output side. 

The next problem to solve was the number of hidden layers and 
the number of neurons contained in them. The selection of the 
number of hidden neurons is usually done by trial and error. The 
goal is to find a network with a minimum number of neurons and 
connections that is able to solve the problem. Networks with 
many connections can learn a problem perfectly, but their 
predictive ability may be very low. A network with one hidden 
layer of three neurons was found to be sufficient to solve our 
problem of bond reactivity (Figure 9). We also tried two hidden 
layers and varied the number of hidden neurons from 2 to 7; 
however these networks have lower prediction ability, cannot learn 
the dataset completely, or the training time increases without 
leading to better results. Altogether there are 7*3 + 3*1 + 3 + 
1 = 28 adjustable weights, including the connections to the bias. 
If the network has more than three hidden neurons the network 
can learn the problem correctly, but the prediction becomes worse. 

The input variables have different ranges, e.g., one varies from 
-0.2 to +0.2 and another from 200 to 500. The input units expect 
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values between 0 and 1, therefore the input values have to be 
scaled. Each input value is separately scaled between its minimum 
and its maximum value in the entire dataset. The classification 
is coded as a 0 for a non-reactive bond breaking and a 1 for a 
reactive bond breaking. During the training phase a stringent 
quality criterion is applied. An output is considered as correct 
if the error is <0.1. 

Reproduction Ability. In the first test, the network was 
presented with the entire dataset of bond breakings. After 400 
learning cycles only one breaking could not be learned correctly. 
This is the breaking of the C-C bond in acetone to give CH3" and 
CHsCO+ which is learned as reactive though it is classified as 
non-reactive. Comparison of this result with earlier investigations 
of this dataset5 offers an explanation: in plots by a principal 
component analysis this bond breaking lies as a separated point 
in a region of reactive bond breakings. In such cases, with only 
one single point in a space of inversely classified bond breakings, 
neural networks which base their decisions on the similarity of 
vectors have difficulties in learning results correctly (see also the 
KNN results5). The error was exactly 1.0. Trying to reduce this 
error in additional cycles was not successful. Analyzing the 
equations used for correction offers an explanation. The error 
signal, 5j, is given by 

5j = (tj - outj)outy(l - OUt1) 

The error signal Bj becomes zero, even if the difference between 
the target and the obtained output is not zero, if either the second 
or the third term becomes zero. 

This problem was solved by adding a small constant to Sj and 
in the next 600 cycles the error signal slowly disappeared. After 
1000 cycles the entire dataset had been learned correctly with a 
maximum error of 0.05. 

Prediction Ability. The intention is to develop a network that 
can predict the reactivity of each single bond breaking in a given 
molecule if the seven bond variables are presented as input. The 
dataset must therefore be divided into two sets: one for training 
and the other one for testing the prediction ability of the network. 

7. Random Selection 

One way of selecting training sets is to take a random selection 
from the entire dataset. A reasonable approach is to split a dataset 
in half and take half of the data for training and the other half 
for testing. This would have amounted to 58 bond breakings in 
the dataset. 

The investigation reported in Section 8 shows that 64 bond 
breakings are necessary to cover the information space evenly. 
In order to make a fair comparison 64 bond breakings were also 
chosen in the random selection. 

Ten different datasets with 64 data each were selected and 
presented to the network. The results were all comparable: the 
network learned eight datasets correctly in 500-2100 cycles. In 
two cases the network is not able to learn one bond breaking even 
after 4000 training cycles. During the training phase the 
classification of a bond breaking was considered in error as long 
as the output value differed from the expected value (target) of 
0.0 or 1.0 by 0.1. For the test cases, a bond breaking is considered 
as wrongly classified when a reactive bond breaking has an output 
value smaller than 0.5 and a non-reactive bond breaking has an 
output value larger than 0.5. From among the 85 bond breakings 
in the test set the number of wrong classifications ranges from 
3 to 12 with 7.5 on average. Table I shows the results in detail. 

An average error of about 9% in the number of predictions on 
bond breakings may be considered acceptable. However, it does 
leave something to be desired. This led us to strive for additional 
improvements. The selection of the dataset for training the 
network is an obvious starting point. 

A random selection from such a small dataset usually does not 
lead to a homogeneously distributed training set. Therefore, other 
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Table I. Predictions by Two-Layer Networks Trained with 10 Randomly Selected Datasets with 64 Bond Breakings for Training and 85 for 
Testing 

1 2 3 4 5 6 7 8 9 10 

no. of epochs 
no. of errors 
rms11 

prediction 
no. of errors 
rms" 

" Root mean square. 

>4000 
1 
0.12 

7 
0.28 

1100 
0 
0.02 

3 
0.15 

700 
0 
0.02 

12 
0.36 

500 
0 
0.02 

10 
0.23 

1000 
0 
0.02 

6 
0.23 

800 
0 
0.02 

7 
0.23 

>4000 
1 
0.12 

5 
0.23 

800 
0 
0.02 

9 
0.28 

1000 
0 
0.02 

7 
0.28 

2100 
0 
0.02 

5 
0.21 

Table II. Correlation Matrix of the Parameters for All 149 
Classified Bond Breakings 

parameter Ax, At7T ab 
A?to BDE 

Ax, 
Aq„ 
R 
ab 
Aftot 
G. 
BDE 

0.19 0.07 
-0.14 

0.00 
0.03 
0.30 

-0.11 
-0.31 

0.12 
-0.03 

-0.74 
-0.41 

0.06 
-0.02 

0.84 

-0.01 
0.01 

-0.28 
-0.72 
0.02 
0.04 

methods for selecting the training set to cover the problem space 
better were sought. 

8. Training Set by Experimental Design Techniques 

Experimental design techniques18 allow one to select the 
minimal number of data that cover a problem space as homo­
geneously as possible. By such techniques one can reduce the 
number of required experiments and draw conclusions which are 
valid in the entire problem space. 

In an m-level experimental design, each of the coordinates 
(variables) of the space is divided into m intervals and from each 
interval one point is selected. For example, when three intervals 
are chosen, objects should be selected so that each variable is 
represented by a low, a middle, and a large value. The case of 
a three level design space with only two variables asks for a 
minimum of 32 = 9 data points. 

Dataset. The seven variables characterizing a bond breaking 
span a seven-dimensional hyperspace. If m is chosen as 3 (low, 
middle, large), 37 = 2187 subspaces are required. As we have 
only 373 bond breakings in the entire dataset most of the subspaces 
cannot be occupied by bond breakings. Therefore, the problem 
space has to be reduced to a lower dimension and/or m has to 
be taken as 2. We decided to take only four of the seven variables 
for experimental design and to divide a variable into three regions. 
Thus, the problem space has 34 = 81 subspaces. 

The selection of the variables for the experimental design can 
be based on the correlation matrix of the variables (see Table II). 

Variables that are highly correlated with each other were 
substituted with only one of them in experimental design. On the 
basis of chemical expectation and an analysis of the correlation 
matrix the following variables were selected: the resonance effect 
(R), the bond polarizability («b)> the measure of the polarity 
(Qc), and the difference in cr-electronegativity (Ax„). 

The AqT variable was deleted because for quite a few of the 
bond breakings considered none of the two atoms bears a ir-charge. 
Thus, as this variable is zero for many bond breakings, it is, 
although important, not statistically balanced over the entire 
dataset. 

The difference in total charge, Aq1n, is highly correlated with 
the polarity measure, g„, and therefore only one, Q„, was taken. 
BDE is correlated to a rather large degree with the bond 
polarizability ab- Therefore, also here only one, ab, was included. 

Experimental design investigations showed the following data 
distribution for all 373 bond breakings: of the 34 = 81 possible 
subspaces only 40 were occupied by the initially classified 116 
bond breakings, 21 subspaces were empty, and 20 subspaces 

contained bond breakings that were not yet classified. On analysis 
of the 20 subspaces containing bond breakings that were not yet 
classified, it was found that an additional 33 (20 for training and 
13 for testing) of them can be classified with a certain reliability 
for correctness. Altogether the new dataset of 149 bond breakings 
now occupies 60 subspaces. However, there are four subspaces 
with six bond breakings of opposite classifications. 

Back-Propagation Network. Ten different training sets were 
tested with the multilayer neural network indicated in Figure 9. 
Each of the test sets received one bond breaking from each 
occupied subspace (60) and additionally four bond breakings out 
of those subspaces that contained both reactive and non-reactive 
bond breakings. From those subspaces containing more than 
one bond breaking of the same class one bond breaking was 
arbitrarily chosen as representing this group. The network was 
trained with 64 bond breakings and the predictions were tested 
with the remaining 85 of the 149 classified bond breakings. A few 
clusters contained only one classified bond breaking, while others 
contained up to 11 bond breakings. The highly occupied clusters 
are in those regions of the hyperspace corresponding to low or 
high reactivity. It seems to be easier for an organic chemist to 
classify a bond breaking in these cases than in cases where bond 
breakings are in regions of transition from reactive to non-reactive. 

The training was started with a value of 0.5 for both the learning 
rate (t\) and the momentum parameter (jit). After 200 cycles the 
momentum parameter was reduced to 0.05 and after 300 cycles 
the learning rate parameter (rj) was reduced to 0.1. After 400 
cycles the network had either learned all bond breakings correctly 
or there were a few error signals with a value of 1.0. As mentioned 
above (Section 6) a constant (0.05) was added to the error signal, 
bj, and in the following cycles the network could learn these bond 
breakings, too. 

In comparison with the results from randomly selected training 
sets (Section 7; Table I) the predictions for the bond breakings 
of the test set were better. The number of wrongly classified 
bond breakings ranged between one and six with an average of 
3.4 misclassifications per set. This is a remarkable improvement 
over the results obtained with randomly selected training sets 
that gave three to twelve errors and, on average, 7.5 misclassi­
fications in a set. Table III shows the results in detail. 

9. Kohonen Mapping 

The technique of experimental design as described above has 
two disadvantages: First, the selection of variables on which the 
experimental design is based is difficult and leads to a loss of 
information. Second, the choice of the number of intervals and 
the positioning of the boundaries between them to reduce the 
dimensionality of the space is somehow arbitrary and introduces 
a bias from the side of the user. 

We were therefore looking for a method that does not require 
a reduction of the dimensionality of the problem space and does 
not need a tedious optimization of the boundaries between the 
intervals. We show here that a Kohonen network can provide 
this functionality. A Kohonen map is a two-dimensional 
representation of a multidimensional parameter space and this 
is exactly what is needed. 
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Table III. Predictions by Two-Layer Networks Trained with 10 Different Datasets Selected by Experimental Design with 64 Bond Breakings for 
Training and 85 for Testing 

1 2 3 4 5 6 7 8 9 10 

training 
no. of epochs 
no. of errors 
rms" 

prediction 
no. of errors 
rms" 

' Root mean square. 

1000 
0 
0.02 

1 
0.10 

900 
0 
0.02 

3 
0.16 

1200 
0 
0.02 

4 
0.23 

2000 
0 
0.02 

3 
0.16 

1200 
0 
0.02 

4 
0.19 

1300 
0 
0.02 

2 
0.16 

1400 
0 
0.02 

3 
0.15 

1100 
0 
0.02 

5 
0.24 

1100 
0 
0.02 

6 
0.23 

1000 
0 
0.02 

3 
0.22 

Entire Dataset. Learning in a Kohonen network is an 
unsupervised process and therefore the network can be trained 
with all 373 single bond breakings—both classified and 
unclassified—of the dataset. 

The dimension of the Kohonen layer, i.e., the number of neurons, 
determines the maximum number of different categories of the 
input data and therefore plays an important role. If the number 
of neurons is too small, many data will be mapped into the same 
neuron and the probability for conflicts between reactive and 
non-reactive bonds ending up in the same neuron will increase. 
On the other hand, if the dimension of the Kohonen net is too 
large, the bond breakings will be spread over the neurons in such 
a way that hardly any neuron obtains more than one bond 
breaking. However, we want to have several bond breakings to 
end up in the same neuron in order to be able to select one for 
the training set and the other for testing. For if several bond 
breakings end up in the same neuron, this is an indication that 
these bond breakings carry similar information as expressed by 
the electronic and energy variables characterizing a bond breaking. 
Then it suffices to take only one of such bond breakings being 
projected into the same neuron into the training set when 
maximum coverage of the entire information space is desired. 

Having 149 classified bond breakings we decided to take a 
9 X 9 Kohonen layer, thus forcing several bond heterolyses into 
the same neuron. In addition, with 81 neurons we have the same 
number of subspaces as in the study by experimental design. This 
allows a fair comparison of the use of a Kohonen network as an 
alternative to traditional experimental design techniques. Sta­
bilization was reached after 30 training cycles. Figure 10 shows 
the resulting Kohonen map, where each neuron of the map is 
represented by a box. The different shadings indicate the classes 
assigned to the bond breaking that have excited this neuron. Black 
is for bond breakings classified as reactive, light gray those 
classified as non-reactive, and dark gray those for unclassified 
bond breakings. Neurons that obtain both types of bond 
breakings, reactive and non-reactive (conflict neurons), are 
indicated by a cross. Neurons that do not receive any bond 
breaking at all are in white. Remember, however, that in the 
learning phase class assignment plays no role. These assignments 
are only used for evaluating the results of the Kohonen mapping. 
This map shows that the classified bond breakings are distributed 
over 56 neurons, i.e., 56 categories. Six neurons are empty and 
19 neurons are occupied by non-classified bond breakings. Twelve 
neurons have only bond breakings classified as reactive and 42 
neurons only bond breakings classified as non-reactive. Among 
the 56 neurons occupied by classified bond breakings, two 
contained conflicts. Conflicts had also been observed in the 
experimental design investigations. Interestingly enough the same 
bond breakings are concerned. Also a 9 X 10 and a 10 X 10 
Kohonen layer were used but the conflicts remained. If a smaller 
network was used the number of conflicts increased. 

Training Set by a Kohonen Network. Ten different training 
sets for the previously designed back-propagation network (Figure 
9) were chosen. For each of the 56 neurons with bond breakings 
of only one classification type arbitrarily one bond breaking was 
chosen as representing this group of bond breakings. In the case 
of those two neurons containing bond breakings of opposite 
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Figure 10. The Kohonen map obtained for 373 bond breakings. The 
shading of the neurons indicates which types of bond breakings end up 
in that particular neuron. Nonclassified bond breakings are indicated 
only for those neurons that have bond breakings classified as neither 
reactive nor non-reactive. 

classification one representative for each class was selected. The 
resulting training sets thus have 58 data, six bond breakings less 
than those used in the experimental design study. With use of 
the same training conditions as in the experimental design study, 
the behavior of the network in the training phase was quite similar 
in both cases. With 700-2800 cycles the training sets can be 
learned completely. For the test sets with 91 bond breakings the 
number of wrongly predicted bond breakings ranges from 0 to 
2. The average number of misclassifications has now dropped 
to only 0.9. Five of the ten neural networks predict all test data 
correctly. Table IV shows the results in detail. These results 
demonstrate that a Kohonen mapping provides a basis for the 
selection of an optimum dataset for the training of a multilayer 
neural network by the back-propagation algorithm. This com­
bination of two neural networks, of an unsupervised and a 
supervised learning method, has here be proven to be superior to 
any other explored approach. 

Prediction Result for Bonds in an Additional Molecule. In this 
section we discuss the prediction ability for bond breakings that 
are in neither the training nor the test set. Two additional 
molecules not included in the dataset before were selected to test 
the prediction ability of the trained network. The network with 
the 7-3-1 architecture and trained for 1600 epoches with 58 bond 
breakings selected from the Kohonen mapping was chosen. 

The molecule in Figure 11 has three functional groups: an 
aldehyde, a secondary alcohol, and a secondary amine group. 
These groups are fairly separated from one another and therefore 
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Table IV. Predictions by Two-Layer Networks Trained with 10 Different Datasets Selected on the Basis of the Kohonen Network with 58 Bond 
Breakings for Training and 91 for Testing 

training 
no. of epochs 
no. of errors 
rms" 

prediction 
no. of errors 
rms" 

1 

900 
0 
0.03 

2 
0.15 

2 

700 
0 
0.04 

2 
0.15 

3 

1200 
0 
0.03 

1 
0.07 

4 

1600 
0 
0.03 

0 
0.02 

5 

900 
0 
0.03 

2 
0.15 

6 

1500 
0 
0.03 

0 
0.06 

7 

1400 
0 
0.03 

0 
0.05 

8 

2800 
0 
0.03 

0 
0.05 

9 

1500 
0 
0.03 

0 
0.02 

10 

800 
0 
0.04 

2 
0.16 
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Figure 11. Predictions of bond breakings made by a two-layer neural 
network. Only reactive bond breakings are indicated; all other bond 
breakings have output values smaller than 0.5. 

H H 
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H °" H 
Figure 12. Predictions of bond breakings made by a two-layer neural 
network. Only reactive bond breakings are indicated; all other bond 
breakings have output values smaller than 0.5. 

they should not interfere much with each other. Only those bond 
breakings considered reactive are indicated. 

The network correctly predicts a high reactivity for the 
deprotonations of the hydroxyl group (bond breaking no. 9), the 
NH group (no. 7), and the methylene group in the a-position 
(nos. 3 and 4) to the aldehyde group. The loss of a hydroxyl 
anion (no. 8) is also correctly considered as occurring easily. 

The loss of a proton at the aldehyde group (no. 1) is also 
predicted as feasible. Such a reaction is usually not observed as 
most bases are also strong nucleophiles and rather undergo a 
nucleophilic attack at the carbonyl group. However, deproto-
nation of formic esters, compounds that have an H—C=O group, 
have been observed. Although the network has been trained only 
for single bonds, it is able to further generalize and to also assign 
the correct reactivity to the C = O (no. 2) double bond. The 
breaking of the C—N bonds (nos. 5 and 6) is considered as feasible. 
In principle, such C—N bond breakings corresponding to a 
nucleophilic aliphatic substitution can be observed but usually 
only after some activation. 

Figure 12 shows those bond breakings predicted to be reactive 
for a second molecule. Only those bond breakings considered 
reactive are indicated. This molecule was selected to test the 
ability of the multilayer neural network for generalizing what it 
has learnt on the reactivity of functional groups. The dataset 

used for training (Scheme I) contained neither a nitrile nor a 
mercapto group; in fact it did not contain any sulfur atom at all. 
Nevertheless, the network correctly perceives the acidity of the 
thiol group (bond breaking no. 1) and the fact that it can be 
exchanged by nucleophilic aliphatic substitution (bond breaking 
no. 2). The latter reaction will, however, need some activation. 
Although the network has not seen any thiol group or sulfur 
atom, it can make predictions on the influences of a sulfur atom 
on chemical reactivity. This is a result of the coding of atoms 
and bonds chosen in this study. Rather than coding atoms, bonds, 
or functional groups explicitly, a more general scheme of coding 
them by electronic and energy variables has been selected. Thus, 
we are not presenting the network with a S-H or a C-̂ S bond, 
bonds that it has never seen and therefore would be unable to 
make predictions. Rather, the network is presented with bonds 
that have a certain bond dissociation energy, a certain elec­
tronegativity difference, a certain bond polarity, etc., variables 
that the network knows how to deal with and thus is able to utilize 
for predictions. 

By the same token the network can make predictions on the 
influence of a cyano group on chemical reactivity. The increase 
in acidity of a CH bond (bond breaking nos. 3 and 4) in the 
a-position to a cyano group is correctly perceived. Furthermore, 
the propensity of the cyano group for nucleophilic displacement 
(bond breaking no. 5) is indicated. And finally, although the 
network has been trained on the reactivity of aliphatic single 
bonds, it can generalize to make predictions on multiple bonds, 
in this case showing that the triple bond of the cyano group will 
react under nucleophilic attack (bond breaking no. 6). 

10. Comparison of the Dataset Selection 

The experimental design technique is tedious and time 
consuming. The selection of the variables for the experimental 
design is the most difficult task. For a given problem one might 
have a host of properties available to characterize the problem. 
However, one might not be able to predict which parameters are 
the most influential ones. Thus, the selection of the parameters 
for the experimental design introduces some arbitrariness and 
leads to a loss of information. Next, the number of ranges for 
the division of each parameter and the boundaries between these 
ranges has to be determined. A series of careful studies of the 
dataset must be performed to find an acceptable solution. 

With a Kohonen neural network all these steps are unnecessary. 
The dimension of the Kohonen layer has to be chosen and the 
entire dataset is run through the network with all available 
variables. The network is rapidly trained and the resulting 
Kohonen map is built. In the worst case the map will show many 
neurons with conflicts and a larger Kohonen layer has to be chosen. 

11. Analysis of the Kohonen Map 

In Section 9 and Figure 10 we presented the results of the 
Kohonen mapping of the entire dataset of 373 bond breakings. 
This Kohonen map was taken as a basis for the selection of a 
dataset for training a back-propagation network that covers the 
information space as broadly as possible. 
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Figure 13. A bond breaking classified as non-reactive that ends up in the 
domain of reactive bond breakings. 

We now analyze the Kohonen map in more detail and show 
that it lends itself to further chemical interpretation. First, one 
can see from Figure 10 that all bond breakings classified as reactive 
end up in neurons that form one coherent region (black space) 
in the center of the figure. This shows that the self-organization 
in the Kohonen learning is able to perceive the similarity of all 
reactive bonds in the dataset and puts them into topologically 
adjacent neurons, forming the observed cluster of (black) neurons. 

There is one intruder into this domain of reactive bond 
breakings, a neuron with a bond breaking classified as non-
reactive. Figure 13 shows this bond breaking. 

The polar breaking of this bond is not directly observed in this 
molecule. It will occur only after a nucleophile (base) has been 
added to the carbonyl group forming a tetrahedral intermediate. 
Thus its classification as non-reactive is justified for this molecule. 
However, in compounds having bulkier groups instead of the 
C2H5 group, i.e., the mesityl group, the breaking of the analogous 
bond is observed. Thus, the bond breaking shown in Figure 13 
can occur when it is not superseded by other types of reactions. 
In effect, it has to be considered as a potentially reactive bond. 
It is, therefore, quite acceptable that this bond breaking ends up 
in the cluster of reactive bonds. 

Neurons activated by non-reactive bond breakings and neurons 
activated by reactive bond breakings touch each other only in a 
few places. This is a further indication of the ability of the 
Kohonen learning to differentiate and separate reactive from 
non-reactive bond breakings. On line with this is the observation 
that the cluster of reactive bonds is surrounded by neurons with 
conflicts or with non-classified bond breakings. Neurons with 
conflicts directly indicate the transition from reactive to non-
reactive. Neurons with non-classified bond breakings indicate 
the cautiousness of the chemists in making a commitment to 
classify a bond breaking as reactive or non-reactive when reactivity 
is in doubt, when it is in between reactive and non-reactive. 

After this discussion of the global features of the Kohonen 
map of the bond breakings a closer look at the bond breakings 
ending up in the individual neurons is taken. First, the cluster 
of neurons with reactive bond breakings is investigated. Figure 
14 shows the types of bond breakings that are mapped into the 
individual neurons. 

As can be seen, similar types of bond breakings end up in the 
same neuron. Thus, the similarity of the individual instances of 
a certain type of bond breaking is perceived. All carbon-
heteroatom bond breakings are at the right-hand side of this part 
of the map, starting on top with carbon-iodine bonds and then 
passing through carbon-bromine, carbon-chlorine, and carbon-
oxygen bonds to carbon-nitrogen bonds. In this sequence there 
is a clear tendency of decreasing polar reactivity from top to 
bottom. 

The left-hand side shows bond breakings that correspond to 
the dissociation of a proton. Two such bond breakings are in 
neurons with conflicts, i.e., in neurons that also contain non-
reactive bond breakings. One conflict occurs because the loss of 
a proton from dichloromethane is classified as reactive whereas 
the loss of a proton from the carbon atom of neopentyl chloride 
that bears the chloro atom is classified as non-reactive. Appar­
ently, the increase in acidity by a second chloro atom is not high 
enough to separate these two bond breakings. The more acidic 
O-H and N-H bond breakings are more to the center of the 
cluster of reactive bonds. As O-H bonds are more acidic than 
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Figure 14. Distribution of bond breakings classified as reactive onto the 
individual neurons. This figure shows a cutting of Figure 10; the row and 
column indices refer to those of Figure 10. Neurons with reactive bond 
breakings are framed in bold; the two neurons with conflicts have extra 
boxes. The arrow indicates the shift of the electron pair on polar breaking. 
The numbers in parentheses give the number of bond breakings of the 
corresponding type contained in the indicated neuron. Y = O, CR2 

N-H bonds and these much more than C-H bonds, there is 
apparently again a decrease in reactivity from top to bottom. The 
less acidic C-H bonds are more at the outskirts. In row 7, neuron 
no. 3 contains C-H bonds activated by either a carbonyl or a 
nitro group, neuron no. 4 contains three different C-H bonds 
activated by either a carbonyl or a C=C bond, and neuron no. 
5 contains three C-H bonds that are activated by two carbonyl 
or two C=C bonds. Thus, there is an increase in reactivity from 
left to right. 

For a more detailed analysis of the bond breakings classified 
as non-reactive the Kohonen map of Figure 10 is shifted by two 
columns to the right and one row to the bottom. Remember, the 
neurons actually cover the surface of a torus and it is quite arbitrary 
where one makes the two cuts to convert the surface of the torus 
into a plane (cf. Figure 6). As will soon become clear, this allows 
one to show an important feature more distinctly. Figure 15 
shows the map thus obtained together with an indication of the 
type and number of bond breakings that end up in the various 
neurons. 

The polar breakings of the C—H and C—C bonds are 
distributed over a wide area of the Kohonen map. A closer 
inspection of the first and second sphere of neighboring atoms 
and bonds indicates the reasons for the various C—H and C=C 
bonds to end up in different neurons. A discussion of these small 
variations goes beyond the scope of this work. 

However, one main feature of this map should be pointed out: 
the reactive bond breakings are now more to the lower left corner 
of the map (Figure 15). In the opposite direction, versus the 
upper right corner, are those bond breakings where a polar bond 
is broken against its inherent polarity. Thus, there is a strong 
reason why such bond breakings are not occurring; they would 
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Figure IS. Distribution of bond breakings classified as non-reactive onto 
the individual neurons. This figure is a shifted version of Figure 10 (see 
text); the row and column indices refer to the original Figure 10. The 
area in black indicates the cluster of reactive bond breakings (cf. Figures 
10 and 14). The two conflict neurons have extra boxes. The bond 
breakings that would occur against a particularly strong polarization are 
framed in black. The arrow indicates the shift of the electron pair on 
polar bond breaking. The numbers in parentheses give the number of 
bond breakings of the corresponding type contained in the indicated neuron. 

be particularly difficult to achieve. These distinctly non-reactive 
bond breakings can be separated quite clearly from the reactive 
ones. 

This discussion should have shown that the self-organizing of 
the Kohonen learning is able, when presented with a proper 
representation of bond properties by fundamental physicochemical 
variables, to indicate in a two-dimensional map important features 
of the reactivity of bonds in organic molecules. 

12. Comparison with Statistical and Pattern Recognition 
Methods and with an Associative Memory System 

The dataset of 29 aliphatic molecules treated here having bonds 
classified for their ease of polar breaking was also investigated 
by statistical and pattern recognition methods including principal 
component analysis (PCA), linear discriminant analysis (LDA), 
partial least squares analysis (PLS), cluster analysis, ^-nearest 
neighbor analysis (KNN), and logistic regression analysis 
(LoRA).5 These methods could successfully be used to model 
the relationship between structure and reactivity. Details of the 
investigations can be found in ref 5. Some of the more prominent 
results are mentioned here for comparison purposes. The studies 
were performed with the entire initial dataset of 116 polar bond 
breakings (42 reactive, 74 non-reactive) (see Section 2). 

A plot of the first component of a PCA against the second or 
third component leads to five wrong classifications of bond 
heterolysis. An LDA study also classified five polar bond 
breakings into the wrong reactivity class. A KNN investigation 
led, in the best result from among a series of different variable 
combinations and values of k, to one misclassified bond breaking. 
A PLS study either gave eight misclassified bond breakings or 
was unable to classify ten bond breakings. And finally, a logistic 

regression analysis gave an equation leading to one wrongly 
classified heterolysis. 

Thus, only the fc-nearest neighbor classification and the logistic 
regression analysis gave results that were as good as the results 
obtained from the classification of the best back-propagation 
network. 

However, these optimum results of the KNN and LoRA studies 
were obtained only after exploration of a large variety of variable 
combinations. Furthermore, the number of wrong classifications 
were taken from the dataset of 116 bond breakings used for 
training the statistical and pattern recognition classifiers. Thus, 
all datapoints had already been "seen" by the KNN and LoRA 
classifier (and also the PCA, LDA, and PLS classifiers). 

The misclassifications given in Table IV were obtained from 
a dataset of 91 bond breakings the back-propagation network 
never had "seen" before because it had been trained on another 
58 bond breakings. Thus, the results of the neural network are 
genuine predictions whereas the results of the statistical and 
pattern recognition classifiers have been obtained on training 
data. 

There are some additional disadvantages in using statistical 
and pattern recognition methods for such classification problems 
as compared with neural networks: Many require a reduction in 
the number of independent variables leading to some loss of 
information; most methods are quite sensitive to correlations 
between independent variables; and finally, in many cases 
assumptions on the mathematical form of the relationship between 
independent (physicochemical) variables and dependent (reactive 
or non-reactive bond) variable (mostly linear) have to be made. 

The combination of a Kohonen network and a multilayer neural 
network trained by the back-propagation algorithm can work 
with all independent variables presented, even if they are highly 
correlated. Furthermore, it develops an implicit, and also 
nonlinear if necessary, relationship between input and output 
data. Clearly, a Kohonen network by itself can already be taken 
as a classifier. After a Kohonen network has been trained, new 
bonds can be input and each bond breaking will end up in a 
particular neuron. By inspection of the reactivity of the other 
bond breakings that are contained in that neuron a prediction of 
the reactivity of the newly mapped bond breaking can be made. 
However, Figure 10 shows that the situation is not that simple. 
Clearly, if a bond breaking ends up in a neuron having only reactive 
or only non-reactive bonds the prediction is unequivocal. But 
what will be the prediction when the neuron is empty, when it 
carries conflicts, or when it has only non-classified bonds? From 
all 81 neurons of Figure 10, 27, or one third, belong to such 
problem cases. 

Thus, it is this unique combination of a Kohonen network and 
a multilayer network trained by the back-propagation algorithm 
that has the highest predictive power as a classifier. 

The multilayer neural network has an additional benefit: it 
provides a continuous scale of values between 0 and 1. These 
values can be taken as a quantitative measure of reactivity. Thus, 
although the network has been trained as a classifier it can, to 
a certain extent, be used to come up with a continuous measure 
of reactivity, 0 being non-reactivity, 0.5 medium reactivity, and 
1.0 high reactivity. 

An associative memory system (AMS) was also trained to 
store the relationship between structure and reactivity in an 
implicit manner.6 There, too, no explicit mathematical function 
has to be given and the relationship may be nonlinear. In that 
respect it resembles a multilayer neural network. However, it 
was shown6 that an AMS with a good predictive power can only 
be obtained by a tedious optimization procedure which forces 
one to find out which physicochemical variables are of little 
influence to eliminate them from the investigation, quite similar 
in analogy to the experimental design technique reported here. 
This elimination of variables nevertheless leads to a loss of 
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information and is not necessary when a Kohonen network is 
used for selecting the training set. 

Furthermore, an AMS offers little help for selecting a well-
balanced training set. Here, the Kohonen network is of great 
value as the choice of the training set has a remarkable influence 
on the prediction obtained from the multilayer neural network. 

One feature of the associative memory system is, however, 
quite interesting. It can provide an estimate of the reliability of 
its predictions. 

13. Conclusions 

The combined application of two fundamentally different types 
of neural networks has led to a procedure that allows one to 
automatically predict which bonds are preferentially prone to 
heterolysis in aliphatic molecules. 

Several features are essential for this successful undertaking. 
First, the polar breaking of a bond has to be described by 
fundamental physicochemical variables. In our approach, we 
have chosen empirical variables in order to be able to treat large 
datasets with the computer resources available to us. Clearly, 
the general methodology outlined in this paper can also be applied 
when similar essential electronic and energy effects are calculated 
by quantum mechanical methods. The choice between empirical 
and quantum mechanical calculations of various degrees of 
sophistication will be dictated by the size of the molecules being 
studied, the extent of the dataset, and the access to computer 
resources. 

The goal of this work was to train a multilayer neural network 
by the back-propagation algorithm to predict the polar breaking 
of single bonds in aliphatic molecules. 

The next step in this endeavor is therefore to select a dataset 
for the training of such a neural network. We have shown that 
the self-organization of a Kohonen network is superior to an 

experimental design technique and even more so to a random 
selection for providing an appropriate training set. The selection 
of a training set on the basis of a Kohonen network can be 
recommended for any supervised learning method, including 
statistical and pattern recognition methods. 

A Kohonen network is not only a good choice for the selection 
of a dataset but it can also preserve and indicate fundamental 
features that influence chemical reactivity. 

In this paper we have shown how the classification of polar 
bond breakings into reactive and non-reactive can be used to 
develop a multilayer neural network able to perform that task 
automatically. Multilayer neural networks can also be used for 
modeling. Thus, if instead of a mere classification of bond 
breakings as reactive or non-reactive quantitative values on the 
probability of bond breaking are available, a neural network can 
be trained that predicts quantitative values on chemical reactivity. 

Clearly, our approach relied on a manual classification of bond 
breakings as reactive or non-reactive. With increasing availability 
of databases on chemical reactions such information can be 
gathered automatically. This offers the opportunity of deriving 
predictions on the reactivity of bonds from the information in 
reaction databases by the combined application of two different 
types of neural networks, a Kohonen network and a multilayer 
neural network. This shows the benefits of the combination of 
an unsupervised and a supervised technique. 
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